Schrödinger Operators and De Branges Spaces
نویسنده
چکیده
We present an approach to de Branges’s theory of Hilbert spaces of entire functions that emphasizes the connections to the spectral theory of differential operators. The theory is used to discuss the spectral representation of one-dimensional Schrödinger operators and to solve the inverse spectral problem.
منابع مشابه
Inverse uniqueness results for Schrödinger operators using de Branges theory
We utilize the theory of de Branges spaces to show when certain Schrödinger operators with strongly singular potentials are uniquely determined by their associated spectral measure. The results are applied to obtain an inverse uniqueness theorem for perturbed spherical Schrödinger operators.
متن کاملReproducing Kernels, De Branges-rovnyak Spaces, and Norms of Weighted Composition Operators
SPACES, AND NORMS OF WEIGHTED COMPOSITION OPERATORS MICHAEL T. JURY Abstract. We prove that the norm of a weighted composition operator on the Hardy space H2 of the disk is controlled by the norm of the weight function in the de Branges-Rovnyak space associated to the symbol of the composition operator. As a corollary we obtain a new proof of the boundedness of composition operators on H2, and ...
متن کاملSubspaces of De Branges Spaces with Prescribed Growth
The growth properties of de Branges spaces and their subspaces are studied. It is shown that, for each given pair of growth functions λ(r) = O(r) and λ1 = o(λ), there exist de Branges spaces of growth λ that have a de Branges subspace of growth λ1. This phenomenon cannot occur for a class of de Branges spaces that, in a certain sense, behave regularly along the real axis. §
متن کاملUniversality Limits for Random Matrices and de Branges Spaces of Entire Functions
We prove that de Branges spaces of entire functions describe universality limits in the bulk for random matrices, in the unitary case. In particular, under mild conditions on a measure with compact support, we show that each possible universality limit is the reproducing kernel of a de Branges space of entire functions that equals a classical Paley-Wiener space. We also show that any such repro...
متن کاملMajorization in de Branges spaces II. Banach spaces generated by majorants
This is the second part in a series dealing with subspaces of de Branges spaces of entire function generated by majorization on subsets of the closed upper half-plane. In this part we investigate certain Banach spaces generated by admissible majorants. We study their interplay with the original de Branges space structure, and their geometry. In particular, we will show that, generically, they w...
متن کامل